Фі́зика (від грец. φυσικός природний, φύσις природа) — природнича наука, яка досліджує загальні властивості матеріїта явищ у ній, а також виявляє загальні закони, які керують цими явищами; це наука про закономірності Природи в широкому сенсі цього слова. Фізики вивчають поведінку та властивості матерії в широких межах її проявів, від субмікроскопічних елементарних частинок, з яких побудоване все матеріальне (фізика елементарних частинок), до поведінки всього Всесвіту, як єдиної системи (космологія).

Деякі з закономірностей, які встановлені фізикою, є загальними для всіх матеріальних систем. До таких можна віднести, наприклад, закон збереження енергії. Такі закономірності називають законами фізикиФізику вважаютьфундаментальною наукою, тому що всі інші природничі науки (хіміягеологіябіологія тощо) мають справу з певними різновидами матеріальних систем, які підкоряються законам фізики. Наприклад, властивості хімічних речовин визначаються властивостями молекул та атомів, які їх складають, а ці властивості досліджують в таких галузях фізики, як квантова механікатермодинаміка і/або електрика (електромагнетизм).

Фізика тісно пов'язана з математикою. Фізичні теорії, як правило, побудовані на основі певного математичного апарату і цей апарат часто набагато складніший в порівнянні з іншими природничими науками. Але відмінність фізики від математики в тому, що фізика принципово зосереджена на описі матеріального світу, тоді як математика має справу з абстрактними ідеями та формулюваннями, які не обов'язково мають якесь реальне відображення. Хоча чіткого поділу не існує. На перетині цих двох наук постала спеціальна дисципліна — математична фізика, яка вибудовує математичні структури фізичних теорій.

Фізика — природнича наука. В її основі лежить експериментальне дослідження явищ природи, а її задача — формулювання законів, якими пояснюються ці явища. Фізика зосереджується на вивченні найфундаментальніших та найпростіших явищ і на відповідях на найпростіші запитання: з чого складається матерія, яким чином частинки матерії взаємодіють між собою, за якими правилами й законами здійснюється рух частинок тощо. В основі фізичних досліджень лежать спостереження. Узагальнення спостережень дозволяє фізикам формулювати гіпотези щодо спільних загальних рис тих явищ, за якими велися спостереження. Гіпотези перевіряються за допомогою продуманого експерименту, в якому явище проявлялося б у якомога чистішому вигляді й не ускладнювалося б іншими явищами. Аналіз даних сукупності експериментів дозволяє сформулювати закономірність. На перших етапах досліджень закономірності мають здебільшого емпіричний, феноменологічний характер, тобто явище описується кількісно за допомогою певних параметрів, характерних для досліджуваних тіл та речовин. Аналізуючи закономірності та параметри, фізики будують фізичні теорії, які дозволяють пояснити досліджувані явища на основі уявлень про будову тіл та речовин і взаємодію між їхніми складовими частинами. Фізичні теорії, в свою чергу, створюють передумови для постановки точніших експериментів, в ході яких здебільшого визначаються рамки їхнього застосування. Найзагальніші фізичні теорії дозволяють формулювання фізичних законів, які вважаються загальними істинами, доки накопичення нових експериментальних результатів не вимагатиме їхнього уточнення.

Так, наприклад, Стівен Ґрей помітив, що електрику можна передавати на доволі значну віддаль за допомогою зволожених ниток і почав досліджувати це явище. Георг Ом зумів знайти для нього кількісну закономірність — струм у провіднику пропорційний напрузі (закон Ома). При цьому, звісно, експерименти Ома опиралися на нові джерела живлення та на нові способи вимірювати дію електричного струму, що дозволило кількісно охарактеризувати його. За результатами подальших досліджень вдалося абстрагуватися від форми та довжини провідників і ввести такі феноменологічні характеристики, як питомий опір провідника та внутрішній опір джерела живлення. Закон Ома й понині залишається основою електротехніки, однак дослідження встановили також рамки його застосування — відкрили елементи електричного кола з нелінійними вольт-амперними характеристиками і навіть речовини, які не мають електричного опору — надпровідники. Після відкриття заряджених мікроскопічних частинок — електронів, була сформульована мікроскопічна теоріяелектропровідності, яка пояснила залежності опору від температури розсіянням електронів на коливаннях кристалічної ґратки, домішках тощо.

Принципи фізичних пошуків дещо відрізняються від досліджнь в інших науках тому, що тут існує чітко визначений розподіл на теорію та експеримент, і з 20 століття більшість фізиків спеціалізується або на теоретичній фізиці, або на експериментальній, і дуже мало таких, які б досягли успіхів в обох напрямах. На відміну, практично всі успішні теоретики біології та хімії також були і експериментаторами.

Теоретики займаються пошуком теорій, які могли б пояснити відомі експериментальні результати та передбачити нові, тоді як експериментатори організують свої практичні дослідження для перевірки результатів теорій. Тобто, незважаючи на існування двох чітких напрямів, вони тісно пов'язані один з одним. Тому прориви в фізиці часто відбуваються саме тоді, коли експериментатори виявляють, що наявні теорії не можуть пояснити їхніх результатів, і це потребує побудови нових фізичних теорій.

Поділ фізиків на теоретиків та експериментаторів пов'язаний із особливою складністю математичного апарату сучасної фізики з одного боку та складністю сучасного експериментального устаткування — з іншого. З появою потужної комп'ютерної техніки виділився новий клас фізиків, які займаютьсякомп'ютерним моделюванням фізичних процесів та розробкою програмного забезпечення для складних фізичних розрахунків. Частково таке моделюванняпроводиться ab initio, тобто виходячи з основних принципів фізичної теорії, частково, ґрунтуючись на феноменологічних теоріях та використовуючи бази даних фізичних параметрів частинокатомів чи речовин.

 

Вітаю Вас, Гість!
П`ятниця, 20.06.2025